skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sahai, Tuhin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Pappas, George; Ravikumar, Pradeep; Seshia, Sanjit A (Ed.)
    We study the problem of learning neural network models for Ordinary Differential Equations (ODEs) with parametric uncertainties. Such neural network models capture the solution to the ODE over a given set of parameters, initial conditions, and range of times. Physics-Informed Neural Networks (PINNs) have emerged as a promising approach for learning such models that combine data-driven deep learning with symbolic physics models in a principled manner. However, the accuracy of PINNs degrade when they are used to solve an entire family of initial value problems characterized by varying parameters and initial conditions. In this paper, we combine symbolic differentiation and Taylor series methods to propose a class of higher-order models for capturing the solutions to ODEs. These models combine neural networks and symbolic terms: they use higher order Lie derivatives and a Taylor series expansion obtained symbolically, with the remainder term modeled as a neural network. The key insight is that the remainder term can itself be modeled as a solution to a first-order ODE. We show how the use of these higher order PINNs can improve accuracy using interesting, but challenging ODE benchmarks. We also show that the resulting model can be quite useful for situations such as controlling uncertain physical systems modeled as ODEs. 
    more » « less
    Free, publicly-accessible full text available May 12, 2026
  2. Given a Boolean formula ϕ(x) in conjunctive normal form (CNF), the density of states counts the number of variable assignments that violate exactly e clauses, for all values of e. Thus, the density of states is a histogram of the number of unsatisfied clauses over all possible assignments. This computation generalizes both maximum-satisfiability (MAX-SAT) and model counting problems and not only provides insight into the entire solution space, but also yields a measure for the hardness of the problem instance. Consequently, in real-world scenarios, this problem is typically infeasible even when using state-of-the-art algorithms. While finding an exact answer to this problem is a computationally intensive task, we propose a novel approach for estimating density of states based on the concentration of measure inequalities. The methodology results in a quadratic unconstrained binary optimization (QUBO), which is particularly amenable to quantum annealing-based solutions. We present the overall approach and compare results from the D-Wave quantum annealer against the best-known classical algorithms such as the Hamze-de Freitas-Selby (HFS) algorithm and satisfiability modulo theory (SMT) solvers. 
    more » « less
  3. We propose a novel passive learning approach, TeLex, to infer signal temporal logic (STL) formulas that characterize the behavior of a dynamical system using only observed signal traces of the system. First, we present a template-driven learning approach that requires two inputs: a set of observed traces and a template STL formula. The unknown parameters in the template can include time-bounds of the temporal operators, as well as the thresholds in the inequality predicates. TeLEx finds the value of the unknown parameters such that the synthesized STL property is satisfied by all the provided traces and it is tight. This requirement of tightness is essential to generating interesting properties when only positive examples are provided and there is no option to actively query the dynamical system to discover the boundaries of legal behavior. We propose a novel quantitative semantics for satisfaction of STL properties which enables TeLEx to learn tight STL properties without multidimensional optimization. The proposed new metric is also smooth. This is critical to enable the use of gradient-based numerical optimization engines and it produces a 30x to 100x speed-up with respect to the state-of-art gradient-free optimization. Second, we present a novel technique for automatically learning the structure of the STL formula by incrementally constructing more complex formula guided by the robustness metric of subformula. We demonstrate the effectiveness of the overall approach for learning STL formulas from only positive examples on a set of synthetic and real-world benchmarks. 
    more » « less
  4. In this paper, we consider the problem of learning Boolean formulae from examples obtained by actively querying an oracle that can label these examples as either positive or negative. This problem has received attention in both machine learning as well as formal methods communities, and it has been shown to have exponential worst-case complexity in the general case as well as for many restrictions. In this paper, we focus on learning sparse Boolean formulae which depend on only a small (but unknown) subset of the overall vocabulary of atomic propositions. We propose two algorithms—first, based on binary search in the Hamming space, and the second, based on random walk on the Boolean hypercube, to learn these sparse Boolean formulae with a given confidence. This assumption of sparsity is motivated by the problem of mining explanations for decisions made by artificially intelligent (AI) algorithms, where the explanation of individual decisions may depend on a small but unknown subset of all the inputs to the algorithm. We demonstrate the use of these algorithms in automatically generating explanations of these decisions. These explanations will make intelligent systems more understandable and accountable to human users, facilitate easier audits and provide diagnostic information in the case of failure. The proposed approach treats the AI algorithm as a black-box oracle; hence, it is broadly applicable and agnostic to the specific AI algorithm. We show that the number of examples needed for both proposed algorithms only grows logarithmically with the size of the vocabulary of atomic propositions. We illustrate the practical effectiveness of our approach on a diverse set of case studies. 
    more » « less